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Preface

The fundamental theory of periodic solutions (in particular, limit cycles)

of nonlinear ordinary differential equations (ODEs) was mainly attributed

to the great French mathematician Jules Henri Poincaré (1854-1912). The

idea of representing the dynamics of a nonlinear ODE in the phase-space

by using what is called the Poincaré return map today, and the preliminary

results of the limit cycles theory such as their existence and characteristics,

are just a few pieces of the most valuable legacies that Poincaré left to

the modern scientific and engineering communities. The significance and

generality of his profound analysis has made an extraordinary impact on

the theories of nonlinear ODEs and dynamical systems, and has greatly

motivated his successors in the pursuit of the modern nonlinear sciences.

For two-dimensional ODE systems, the earlier conjecture about the ex-

istence of periodic solutions given by Poincaré was formally presented by

the Soviet mathematician A. A. Andronov and his colleagues. Ever since

then, this existent result for periodic solutions of two-dimensional ODEs

has been referred to as the Poincaré-Andronov conjecture in the literature.

Independently, the German mathematician E. Hopf published in 1942 an el-

egant result that shows the existence of limit cycles in n-dimensional ODE

systems, for n ≥ 2, assuming only the smoothness of the nonlinear vec-

tor fields of the systems. This is the celebrated Hopf bifurcation theorem.

Basically, the theorem proves that the amplitude and frequency of a peri-

odic solution of such a system can be approximately calculated when a key

real parameter of the system is varied. In addition, the theorem explains

how the stability of the periodic solution, which is bifurcating from the

equilibrium, can be determined as the key parameter is varied. Then, the

Hopf bifurcation theorem was reconfirmed and applied about thirty years

later by many other researchers from different disciplinary fields when some

vii
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powerful computational tools became available.

All the aforementioned works use the state-space formulation, namely, a

system of nth-order ordinary differential equations. This will be referred to

as the “time domain” approach in this book. Yet, there is another interest-

ing formulation of the same dynamical systems available in the literature.

This alternative representation applies the familiar engineering feedback

systems theory and methodology: an approach described in the “frequency

domain”, the complex domain after the standard Laplace transforms have

been taken on the time-domain state-space systems. The frequency-domain

approach was initiated by Allwright, Mees and Chua in the late 1970s. This

methodology has an enjoyable engineering flavor and, indeed, possesses sev-

eral advantages over the classical time-domain methods. A typical one is

its pictorial characteristic that utilizes advanced computer graphical capa-

bilities and so bypasses quite a lot of profound and difficult mathematical

analysis, specially for some infinite-dimensional systems. As a result, it

clearly visualizes some fairly complex dynamical behavior. This book is de-

voted to this frequency-domain approach, for both regular and degenerate

Hopf bifurcation theories for continuous-time systems, including those with

time delays.

Proceeding with thorough discussions in the following chapters, the

reader will be able to realize that many significant results and compu-

tational formulas obtained in the studies of regular and degenerate Hopf

bifurcations from the time-domain approach can also be reformulated into

the corresponding frequency-domain setting, and be rediscovered by using

the frequency-domain methods.

This book shows in detail how the frequency-domain approach can be

used to obtain several types of standard bifurcation conditions for gen-

eral nonlinear dynamical systems. A rich pictorial gallery of local bifur-

cation diagrams for nonlinear systems under simultaneous variations of

several system parameters is demonstrated. In addition, in conjunction

with this graphical analysis of local bifurcation diagrams, the defining and

non-degeneracy conditions for several degenerate Hopf bifurcations are pre-

sented. Some higher-order harmonic balance approximation formulas are

derived for analyzing the dynamical behavior in small neighborhoods of

certain types of degenerate Hopf bifurcations. These formulas allow one

to better approximate the amplitudes and frequencies of oscillations that

are “far away” from an equilibrium. With these improved approximations,

those limit cycles containing an important harmonic content (i.e., when the

amplitudes of harmonics have comparable sizes with respect to the ampli-
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tude of the main frequency component) can be described more accurately.

The frequency-domain approach is also extended to the case of delay-

differential equations, where the time delays can be discrete or distributed.

For the case of discrete delays, several alternative analysis methods are

presented, depending on the structure of the system under study. A general

alternative is then extended to the case of distributed delay systems, for

several models mainly concerning biological applications.

The book is organized as follows. In Chapter 1, some fundamental math-

ematical concepts and results about stability and bifurcations in nonlinear

dynamical systems are reviewed. Some classical analysis tools are briefly

introduced. In Chapter 2, the frequency-domain approach to the Hopf bi-

furcation for ODEs is introduced. The advantages as well as limitations

of this frequency-domain approach are commented and some illustrative

examples are presented. Chapter 3 is devoted to the analysis of static and

multiple bifurcations points using the graphical methods and tools. The

most elementary static bifurcations are presented and their computation

under the frequency-domain framework is demonstrated. Chapter 4 is de-

voted to the study of some explicit formulas that can be used as efficient

conditions for recovering the degenerate (i.e., singular) bifurcation points

of a dynamical system under simultaneous variations of several system pa-

rameters. A graphical method for computing certain singularities that are

crucial to the understanding of the global dynamics is developed. Chapter

5 studies an extension of the valid domain for periodic solutions, where

higher-order harmonic balance approximations are applied. The results on

the continuation of periodic solutions obtained from the frequency-domain

approach are verified and compared to those obtained by using a specific

software or some other well-known methods. A computational algorithm

is derived in this chapter, for the continuation of periodic solutions near

degenerate Hopf bifurcation points of certain types. In Chapter 6, the

frequency-domain method developed in the previous chapters is applied to

detecting oscillations in nonlinear systems with discrete-time delays. As is

well known, there will be an infinite number of eigenvalues in the corre-

sponding linearized system, so it can be expected that a great diversity of

multiple and degenerate Hopf bifurcations exists, as compared to the non-

linear systems without time delays. Feedback systems that have only one

time delay in the linear and/or nonlinear feedback loop are considered. In

Chapter 7, a general approach for the study of distributed-delay systems

is introduced. This formulation is particularly useful for biological appli-

cations. Some interesting examples are discussed. In Chapter 8, different



September 17, 2019 8:48 Frequency-Domain Approach to Hopf Bifurcation Analysis-11418 2019Book page x

x Frequency-Domain Approach to Hopf Bifurcation Analysis

cases of degenerate Hopf bifurcations in time-delay systems are analyzed,

some of which have two or even more delays. Finally, some higher-order

formulas for the Hopf bifurcation are provided in the Appendices.

The authors would like to express their acknowledgments to the people

who have helped in some way in the preparation of this research monograph.

The first author would like to thank his parents Juan and Alicia and his wife

Yesica for their long-term support. The second author would like to thank

his wife Mariela and his parents Bernardo and Lidia, for their patience,

understanding, and encouragement. The third author is very grateful to his

wife, Helen Q. Chen, for her constant strong support. Among the colleagues

who have collaborated in this project in different stages, the authors would

like to thank Professors Hernán Cendra, Leon O. Chua, Alfredo C. Desages,

Eusebius J. Doedel, Eduardo Paolini, Walter Reartes, José Romagnoli and
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